Superoxide, H2O2, and iron are required for TNF-alpha-induced MCP-1 gene expression in endothelial cells: role of Rac1 and NADPH oxidase.

نویسندگان

  • Xi-Lin Chen
  • Qiang Zhang
  • Ruozhi Zhao
  • Russell M Medford
چکیده

Reactive oxygen species (ROS) play an important but not yet fully defined role in the expression of inflammatory genes such as monocyte chemoattractant protein (MCP)-1. We used complementary molecular and biochemical approaches to explore the roles of specific ROS and their molecular linkage to inflammatory signaling in endothelial cells. Adenovirus-mediated expression of superoxide dismutase and catalase inhibited TNF-alpha-induced MCP-1 gene expression, suggesting important roles of superoxide (O(2)(-).) and H(2)O(2) in MCP-1 gene activation. In addition, the iron chelator 1,2-dimethyl-3-hydroxypyridin-4-one and the hydroxyl radical scavengers dimethylthiourea and dimethyl sulfoxide inhibited TNF-alpha-induced MCP-1 expression, suggesting important roles of iron and hydroxyl radicals in inflammatory signal activation. In contrast, scavenging of peroxynitrite with 5,10,15,20-tetrakis-(4-sulfonatophenyl)prophyrinato iron (III) chloride had no effect on TNF-alpha-induced MCP-1 expression. Inhibition of NADPH oxidase, the major oxidase responsible for O(2)(-). generation, with diphenylene iodonium suppressed TNF-alpha-induced MCP-1 mRNA accumulation. Rac1 is an upstream signaling molecule for the activation of NADPH oxidase and O(2)(-). generation. Expression of dominant negative N17Rac1 by adenovirus suppressed TNF-alpha-induced MCP-1 mRNA levels and MCP-1 protein secretion. Expression of N17Rac1 inhibited TNF-alpha-induced MCP-1 and NF-kappaB transcriptional activity. These data suggest that ROS such as superoxide and H(2)O(2) derived from Rac1-activated NADPH oxidase mediate TNF-alpha-induced MCP-1 expression in endothelial cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Superoxide, H2O2, and iron are required for TNF- -induced MCP-1 gene expression in endothelial cells: role of Rac1 and NADPH oxidase

Chen, Xi-Lin, Qiang Zhang, Ruozhi Zhao, and Russell M. Medford. Superoxide, H2O2, and iron are required for TNFinduced MCP-1 gene expression in endothelial cells: role of Rac1 and NADPH oxidase. Am J Physiol Heart Circ Physiol 286: H1001–H1007, 2004. First published October 30, 2003; 10.1152/ajpheart.00716. 2003.—Reactive oxygen species (ROS) play an important but not yet fully defined role in ...

متن کامل

Aldosterone Induces Oxidative Stress Via NADPH Oxidase and Downregulates the Endothelial NO Synthesase in Human Endothelial Cells

Aldosterone is traditionally viewed as a hormone regulating electrolyte and blood pressure homeostasis. Recent studies suggest that Aldo can cause microvascular damage, oxidative stress and endothelial dysfunction. However, its exact cellular mechanisms remain obscure. This study was undertaken to examine the effect of Aldo on superoxide production in human umbilical artery endothelial cel...

متن کامل

Spironolactone Inhibits NADPH Oxidase-Mediated Oxidative Stress and Dysregulation of the Endothelial NO Synthase in Human Endothelial Cells

Accumulating evidence indicates that aldosterone plays a critical role in the mediation of oxidative stress and vascular damage. NADPH oxidase has been recognized as a major source of oxidative stress in vasculature. However, the relation between NADPH oxidase in aldosterone-mediated oxidative stress in endothelial cells remains to be ascertained. The present study aimed to investigate the rel...

متن کامل

Spironolactone Inhibits NADPH Oxidase-Mediated Oxidative Stress and Dysregulation of the Endothelial NO Synthase in Human Endothelial Cells

Accumulating evidence indicates that aldosterone plays a critical role in the mediation of oxidative stress and vascular damage. NADPH oxidase has been recognized as a major source of oxidative stress in vasculature. However, the relation between NADPH oxidase in aldosterone-mediated oxidative stress in endothelial cells remains to be ascertained. The present study aimed to investigate the rel...

متن کامل

NO modulates monocyte chemotactic protein-1 expression in endothelial cells under cyclic strain.

Endothelial cells (ECs) under hemodynamic forces increase intracellular reactive oxygen species (ROS) that modulate gene expression. We previously showed that NO attenuated the shear flow-induced gene level. The present study explored the role of endothelial NO in cyclic strain-treated ECs. Treatment of ECs with S-nitroso-N-acetylpenicillamine (SNAP), an NO donor, reduced cyclic strain-induced ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 286 3  شماره 

صفحات  -

تاریخ انتشار 2004